Reg.	No:												
	SIDDH	IARTI	H INS	TITU	TE O	FEN	GINE	ERIN	[G &]	TECH	INOL	OGY:: PUTTUR	
			110				TON						
	B.Tec	h IV Y	ear I	Seme	ester	`				ninati	ions l	November-2020	
							IONS	-					
					-		inical I	-		-			
Time:	3 hours				`			0	0	/		Max. Marks: 60	1
				(A	nswei	r all F	ive Un	its 5 x	: 12 =	60 Ma	arks)		
								IT-I					
1	Solve t	he foll	owing	LPPI	ov Du	al Sin	iplex r	nethod	1				12M
	Minim		-		•		ľ						
						$> 2X_1$	X_2+X	$_{3} > 4$					
				5			$-X_{2}^{-}+2X_{2}^{-}$						
								$X_3 > 2$					
						X_1	$, X_2, \Sigma$	$X_3 > 0$					
)R					
2	Solve	the foll	owing	LPP b	y Big-l	M pen	alty me	thod					12M
			Min	imize	Z= 52	$K_1 + 3X$	-2						
			Subj	ected t	o 2X	$X_1 + 4X$	₂ ≤12,						
					22	$X_1 + 2X$	₂ =10,						
					52	•	₂≥10 a						
						Х	1, X2≥						
							UN	IT-II					
3	-		-				•					ferent machines is	12M
	indicat	ed belo	w. As	ssign t	he ma	chine	s for th	ne jobs	s so th	at the	total p	processing time in	

J P g min.

	MACHINES											
	1 2 3 4 5											
JOBS	1	9	22	58	11	19						
Oſ	2	43	78	72	50	63						
·	3	41	28	91	37	45						
	4	74	42	29	49	39						
	5	36	11	57	22	25						

OR

A department has 5 employees and five jobs are to be performed. The time each man 4 **12M** will take to perform each job is given in the following table below. How the job should be Allocated one per employee, so as to minimize the total man-hours.

MACHINES	Α	B	С	D	Ε
JOBS					
1	9	3	10	13	4
2	8	17	13	20	5
3	5	14	8	11	6
4	11	13	9	12	3
5	12	8	14	16	7

6

OR

5 Consider a self-service store with one cashier. Assume Poisson arrivals and exponential service times. Suppose that 9 customers arrive on the average every 5 minutes and the cashier can serve 10 in 5 minutes, Find a) Average number of customers queuing for service b) Probability of having more than 10 customers in the system. c) Probability that a customer has to queue for more than 2 minutes

Solve the following GAME Theory , using the Dominance Principle

A	B							
FirmA	4	6	5	10	6			
Ξ	7	8	5	9	10			
	8	9	11	10	9			
	6	4	10	6	4			
UNIT-IV								

7 A project has the following schedule. Construct PERT network and compute the total 12M float for each activity. Find critical path and its duration .Also calculate Total Float, Free Float, Construct PERT network and compute the total float for each activity. Find critical path with its duration.

Activity	Time in	Activity	Time in	Activity	Time in			
	month		month		month			
1-2	2	3-6	8	6-7	5			
1-3	2	3-7	5	7-8	4			
1-4	1	4-6	3	7-9	3			
2-5	4	5-8	1					
OR								

8 Find the sequence that minimizes the total elapsed time required to complete the following tasks on the machines in the order 1 - 2 - 3. Find also the minimum total elapsed time and the ideal times on the machines.

		A	B	С	D	Ε	F	G
n nes	1	3	8	7	4	9	8	7
Fasks ime on Machin	2	4	3	2	5	1	4	3
Tas time Mae	3	6	7	5	11	5	6	12
UNIT-V								

9 The yearly cost of 2 machines A and B when money value is neglected is as follows. 12M

Year (n)	1	2	3	4	5
Machine A	1800	1200	1400	1600	1000
Machine B	2800	200	1400	1100	600

Find their cost patterns if money values is 10% per year and hence find which machine is most Economical

OR

a Explain the Bellman's principle of optimality
b Describe the various types of replacement situations and Explain about group
6M
6M

*** END ***

R16

12M

12M